一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。下面是小编整理的人教版一次函数数学知识点总结,仅供参考希望能够帮助到大家。
人教版一次函数数学知识点总结
1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
2、一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
3、一次函数的图象(三步画图象)
由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)
(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;
②k<o时,y的值随x值的增大而减小.< p="">
(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(3)b的正、负决定直线与y轴交点的'位置;
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
5、确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
6、待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
7、用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
8、本章思想方法
(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。
(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。
典型例题
例1、当m为何值时,函数y=—(m—2)x+(m—4)是一次函数?
例2、一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.
例3、(2003厦门)某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2—5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为__℃.
例4、已知y+m与x—n成正比例(其中m,n是常数)
(1)y是x的一次函数吗?请说明理由;在什么条件下,y是x的正比例函数?
(2)如果x=—1时,y=—15;x=7时,y=1,求这个一次函数的解析式。并求这条直线与坐标轴围成的三角形的面积。
例5、(哈尔滨)若正比例函数y=(1—2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1y2,则m的取值范围是_____________
例6、一次函数y=kx+b的自变量x的取值范围是—36,相应函数值的取值范围是—5—2,则这个函数的解析式为。
例7、我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0。3万元,每吨芒果售价为人民币0。5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).< p="">
(1)请写出y关于x的函数关系式;
(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y附:初二数学一次函数知识点总结全面
学数学的方法技巧
课前预习阅读
预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
课后巩固
课后巩固自己的知识点也很重要。课后巩固可以让你的知识点得到一个再记忆的效果,加深记忆数学知识点的效果。
会比较
在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如学习棱柱时,我们可以将其和我们已经熟悉的圆柱作对比,总结归纳他们的相同点和不同点,达到加深记忆和理解目的。
写数学学习总结
每周写一次数学学习总结,也是一种提高初中数学学习成绩的好方法。 在写初中数学学习总结的时候,我们可以回顾一下本周的数学学习概况,同时可以写一些自己下一周、下一个月的数学学习规划,这样既能对过去的学习有所总结,还能够对未来的数学学习有所计划,两者加起来的话,将会让我们的数学学习思路和目标更加明确。
数学图形的初步认识知识点
1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。
3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。
4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
(1)图形是由点,线,面构成的。
(2)线与线相交得点,面与面相交得线。
(3)点动成线,线动成面,面动成体。
数学北师大版一次函数知识点
上一篇:人教版一次函数数学知识点总结