欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

高中数学最新重要知识点汇总

一网宝 分享 时间: 加入收藏 我要投稿 点赞

有些学生认为文科需要背诵的知识点太多,而在高考中基础知识题的分值不高,所以索性就放弃了。他们不知道解决好基础知识,正是提高文科成绩的关键所在。下面是小编为大家整理的有关高中最全数学知识点总结汇总,希望对你们有帮助!

1高中数学直线方程知识点总结

1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线

K=-A/B,b=-C/B

A1/A2=B1/B2≠C1/C2←→两直线平行

A1/A2=B1/B2=C1/C2←→两直线重合

横截距a=-C/A

纵截距b=-C/B

2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线

表示斜率为k,且过(x0,y0)的直线

3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线

表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线

4:斜截式:y=kx+b适用于不垂直于x轴的直线

表示斜率为k且y轴截距为b的直线

5:两点式:适用于不垂直于x轴、y轴的直线

表示过(x1,y1)和(x2,y2)的直线

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交点式:f1(x,y)m+f2(x,y)=0适用于任何直线

表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线

7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线

表示过点(x0,y0)且与直线f(x,y)=0平行的直线

8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线

过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度

9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线

表示过点(x0,y0)且方向向量为(u,v)的直线

10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线

表示过点(x0,y0)且与向量(a,b)垂直的直线

11:点到直线距离

点P(x0,y0)到直线Ι:Ax+By+C=0的距离

d=|Ax0+By0+C|/√A2+B2

两平行线之间距离

若两平行直线的方程分别为:

Ax+By+C1=OAx+By+C2=0则

这两条平行直线间的距离d为:

d=丨C1-C2丨/√(A2+B2)

12:各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零.

13:位置关系

若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0

1.当A1B2-A2B1≠0时,相交

2.A1/A2=B1/B2≠C1/C2,平行

3.A1/A2=B1/B2=C1/C2,重合

4.A1A2+B1B2=0,垂直

2高中文科数学知识点

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.


精选图文

221381