在研究生入学考试中,线性代数是数一、数二、数三考生研究生考试的公共内容,占22%(总分150分),考察2个选择题(每题4分,共8分)、1个填空题(每题4分,共8分)、2个解答题(总分22分)。线性代数相对考研数学高数来说,比较简单,要想取得好的成绩,线代争取不丢分。线性代数包含行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型等六个模块,下面结合大纲考点,分章节整理分析常考题型,希望对考生有所帮助。
一、行列式
1、考试内容
(1)行列式的概念和基本性质;(2)行列式按行(列)展开定理
2、考试要求
(1)了解行列式的概念,掌握行列式的性质;
(2)会应用行列式的性质和行列式按行(列)展开定理计算行列式.
3、常考题型
(1)行列式基本概念;(2)低价行列式的计算;(3)高阶行列式的计算;(4)余子式与代数余子式
二、矩阵
1、考试内容
(1)矩阵的概念;(2)矩阵的线性运算;(3)矩阵的乘法;(4)方阵的幂;(5)方阵乘积的行列式;(6)矩阵的转置;(7)逆矩阵的概念和性质;(8)矩阵可逆的充分必要条件;(9)伴随矩阵;(10)矩阵的初等变换;(11)初等矩阵;(12)矩阵的秩;(13)矩阵的等价;(14)分块矩阵及其运算
2、考试要求
(1)理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质;(2)掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;(3)理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;(4)了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法;(5)了解分块矩阵的概念,掌握分块矩阵的运算法则。