一、选择题
1.已知=,则tan α+=()
A.-8 B.8
C.1 D.-1
答案:A 解题思路:
=
=cos α-sin α=,
1-2sin αcos α=,即sin αcos α=-.
则tan α+=+===-8.故选A.
2.在ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为()
A.-1/2 B.1/3
C. 1/2D.-1
答案:B 解题思路:由tan Atan B=tan A+tan B+1,可得=-1,即tan(A+B)=-1,又因为A+B(0,π),所以A+B=,则C=,cos C=.
3.已知曲线y=2sincos与直线y=相交,若在y轴右侧的交点自左向右依次记为P1,P2,P3,…,则||等于()
A.π B.2π
C.3π D.4π
答案:B 命题立意:本题考查三角恒等变换及向量的坐标运算,难度较小.
解题思路:由于f(x)=2sin2=2×=1+sin 2x,据题意,令1+sin 2x=,解得2x=2kπ-或2x=2kπ-(kZ),即x=kπ-或x=kπ-(kZ),故P1,P5,因此||==2π.
4.在ABC中,角A,B,C所对的边分别为a,b,c,S表示ABC的面积,若acos B+bcos A=csin C,S=(b2+c2-a2),则B等于()
A.90° B.60°
C.45° D.30°
答案:C 解题思路:由正弦定理和已知条件知sin Acos B+sin Bcos A=sin2C,即sin(A+B)=sin2C, sin C=1,C=,从而S=ab=(b2+c2-a2)=(b2+b2),解得a=b,因此B=45°.
5.已知=k,0