欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!
首页 > 其他 >

2017年中考语文现代文阅读分类练习:说

一网宝 分享 时间: 加入收藏 我要投稿 点赞

  2017年中考数学模拟练习题及答案1

  A级 基础题1.(2013年湖南衡阳)1=100°,∠C=70°,则∠A的大小是()A.10° B.20° C.30° D.80°2.(2013年湖北宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C. 1,2,3 D. 2,3,43.(2013年湖南长沙)下列各图中,∠1大于∠2的是()4.(2013年陕西)在四边形ABCD中,AB=AD,CB=CD,若连接AC,BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对5.(2011年四川绵阳)王师傅用四根木条钉成一个四边形木架,如图4-2-16.要使这个木架不变形,他至少还要再钉上几根木条()A.0根 B.1根 C.2根 D.3根6.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线 C.三角形的高 D.三角形的中位线7.(2013年辽宁铁岭)如图4-2-17,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是()A.BC=EC,∠B=∠E B.BC=EC, AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等9.(2013年广西柳州)ABC≌△DEF,请根据图中提供的信息,写出x=________10. (2013年浙江义乌)已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是____________.11.(2013年湖南邵阳)将一副三角板拼成如图4-2-21所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.12.(2013年山东菏泽)如图4-2-22,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.B级 中等题13.(2012年黑龙江)在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15° B.20° C.25° D.30°14.(2012年黑龙江绥化)直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠FAB=90°).C级 拔尖题15.(2013年山东东营) (1)如图4-2-25(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D,E.证明:DE=BD+CE;(2)如图4-2-25(2),将(1)中的条件改为:在△ABC中,AB=AC,点D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由;(3) 拓展与应用:如图4-2-25(3),点D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案:1.C 2.D 3.D 4.C 5.B 6.C 7.C 8.A9.2010.AB=AC或AD=AE或BD=CE或BE=CD(写出一个即可)11.解:(1)由三角板的性质可知:∠D=30°,∠3=45°,∠DCE=90°.∵CF平分∠DCE,∴∠1=∠2=12∠DCE=45°.∴∠1=∠3,∴CF∥AB.(2)由三角形内角和可得∠DFC=180°-∠1-∠D=180°-45°-30°=105°.12.(1)证明:∵∠ABC=90°,∴∠DBE=180°-∠ABC=90°.∴∠ABE=∠CBD.在△ABE和△CBD中,AB=CB,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD(SAS).http://www.xkb1.co m(2)解:∵AB=CB,∠ABC=90°,∴△ABC是等腰直角三角形.∴∠ECA=45°.∵∠CAE=30°,∠BEA=∠ECA+∠EAC,∴∠BEA=45°+30°=75°.由①知∠BDC=∠BEA,∴∠BDC=75°.13.D 14.1315.证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)由(2)知,△ADB≌△CEA,则BD=AE,∠DBA=∠EAC.∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠EAC+∠CAF.∴∠DBF=∠EAF.∵BF=AF,BD=AE,∴△DBF≌△EAF.∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享