欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

2021初三中考数学复习资料

一网宝 分享 时间: 加入收藏 我要投稿 点赞

所有的成功都来自于行动,只有付诸行动,才能一步步走向成功。下面是小编为大家整理的有关中考数学复习资料整合,希望对你们有帮助!

中考数学复习资料整合1

一、代数式

1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式

单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数的项的次数,就是这个多项式的次数。

3.多项式的排列:

1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

三、整式的运算

1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:

5.整式的乘法:

1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法

1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解:把一个多项式化成几个整式的积的形式

1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

2)公式法:A.平方差公式;B.完全平方公式

中考数学复习资料整合2

一、考点分析考点一、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d

d=r点P在⊙O上;

d>r点P在⊙O外。

考点二、过三点的圆

1、过三点的圆

不在同一直线上的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

圆内接四边形对角互补。

考点三、直线与圆的位置关系

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交d

直线l与⊙O相切d=r;

直线l与⊙O相离d>r;

中考数学复习资料整合3

▽三角形▽

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

中考数学复习资料整合4

1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:

这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。

进一步有:

①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。

②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。

③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。

2.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。)

先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。

3.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:

若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。

若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。

4.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题。

①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式(如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程),利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否?若等,该交点合题,反之不合题,舍去。

②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1?若为-1,则就说明所求交点合题;反之,舍去。

5.“题中含有两角相等,求相关点的坐标或线段长度”等的问题:

题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口。


精选图文

221381