欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

八年级数学上册基础知识点总结

一网宝 分享 时间: 加入收藏 我要投稿 点赞

学会整合知识。把你需要学习的信息和知识分类,制成思维导图或知识卡,这样可以使你的大脑和思维清晰,便于记忆、复习和掌握。下面是小编为大家整理的有关人教版八年级数学上册知识点总结,希望对你们有帮助!

人教版八年级数学上册知识点总结1

第十一章 三角形

一、知识框架:

知识概念:

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

8.多边形的内角:多边形相邻两边组成的角叫做它的内角.

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对

角线.

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用

多边形覆盖平面,

13.公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和.

性质2:三角形的一个外角大于任何一个和它不相邻的内角.

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°.

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角

线,把多边形分成个三角形.②边形共有条对角线.

第十二章 全等三角形

一、知识框架:

二、知识概念:

1.基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形.

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

⑷对应边:全等三角形中互相重合的边叫做对应边.

⑸对应角:全等三角形中互相重合的角叫做对应角.

2.基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

3.全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等.

⑵边角边():两边和它们的夹角对应相等的两个三角形全等.

⑶角边角():两角和它们的夹边对应相等的两个三角形全等.

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.

4.角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等.

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

5.证明的基本方法:

⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶

角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证.

⑶经过分析,找出由已知推出求证的途径,写出证明过程.

第十三章 轴对称

一、知识框架:

二、知识概念:

1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相

重合,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

个图形重合,那么就说这两个图形关于这条直线对称.

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这

条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫

做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做

底角.

⑸等边三角形:三条边都相等的三角形叫做等边三角形.

2.基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一

对对应点所连线段的垂直平分线.

②对称的图形都全等.

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等.

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

⑶关于坐标轴对称的点的坐标性质

人教版八年级数学上册知识点总结2

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

人教版八年级数学上册知识点总结3

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

三、数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+•••+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。


精选图文

221381