数学学习方法
再次回归课本。题在书外,但理都在书中。对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化。通过看课本系统梳理高中数学知识,巩固高中数学基本概念。看课本,有三个建议,一是打乱顺序按模块阅读,二是要注意里面的小字和旁白以及后面的“阅读与思考”,三是对于基础较弱的学生,可把书后典型习题再做一遍。
利用好错题本(或者积累本)。要把自己常犯的错或易忽略的内容在高考之前彻底解决,给自己积极的心理暗示。限时强化训练,全真模拟训练。除了强化知识,还要学会非智力因素在考试中的应用,适当的懂得放弃。
答题时要有强烈的“功利心”——多得一分是一分。例如,考试时遇到不会做的选择题,若不择手段(验证法、估算法、数形结合、特例法等方法)还是做不出来,此时绝不提倡钻研精神,要暂时跳过去答后面的,回头有时间再来打这只拦路虎,切不可因为这一道5分的题,影响后面20分甚至更多会做的题因没时间做而拿不到分。
高考数学必考知识点之解析几何
1用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
2到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
3线的倾斜角、到的角、与的夹角的取值范围依次是。
4定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
5不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
6线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
7决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)
8种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
9圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
10圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
11是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)
12锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
13几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
2020年南阳市中小学生寒假放假时间
下一篇:2020年惠州小学寒假放假时间