一、 考试要求共济
要求考生系统地掌握离散数学的基本概念、基本定理和方法,具有较强的逻辑思维和抽象思维能力,能够灵活运用所学的内容和方法解决实际问题。考
二、 考试内容济
1、 数理逻辑济
1)命题和联结词,谓词与量词,合适公式,赋值,解释与指派,范式共
2)命题形式化,等价式与对偶式,蕴含式,推理与证明
3)证明方法3
4)数学归纳法
2、 集合论院
1)集合代数,笛卡尔乘积,关系与函数,关系的性质与运算
2)等价关系,划分共济
3)偏序关系与偏序集,格辅导
3、 计数336260 37
1)排列与组合,容斥原理,鸽巢原理共
2)离散概率正门
3)函数的增长与递推关系院
4、 图论 共济网
1)欧拉图与哈密顿图,平面图与对偶图,二部图与匹配,图的着色021-
2)树,树的遍历,最小生成树正门
3)最短路经,流量
5、形式语言与自动机 院
1)语言与文法,正则表达式与正则集
2)有限状态自动机,自动机与正则语言
6、 代数系统
1)二元运算,群与半群,积群与商群,同态与同构
2)群与编码
3)格与布尔代数,环与域
三、 试卷结构
1、考试时间为3小时,满分100分。
2、题目类型:计算题、简答题和证明题。
参考书
1.离散数学,胡新启,武汉大学出版社,2007年。
2.离散数学,尹宝林、何自强、许光汉、檀凤琴等,高等教育出版社,1998年。
3.离散数学及其应用,Kenneth H. Rosen,机械工业出版社,2002年。