时间过得真快,总在不经意间流逝,我们的学习目标和学习任务同时也不断变化,为此需要好好地写一份学习计划了哦。学习计划怎么写才能发挥它最大的作用呢?亲爱的读者,小编为您准备了一些数学学习计划,请笑纳!
数学学习计划1
期末考完之后能做什么?这是每个学生和家长都想问的问题。每次大考,总是会给学生带来很大的触动,很多人开始懂得了要好好学习,很多人通过考试发现了自己的不足,大多数人只有在这个时候才显得认识很“深刻”。而寒假恰好是一个查漏补缺的最佳时机。高三上半学期结束之后,多数学校高中阶段的数学知识就已经全部学完,并且进行了第一轮的复习,有的学校甚至开始第二轮复习。
那么,在高中的最后一个寒假,高考生应如何做好数学这一重要科目的复习呢?
对于今年高考数学科目的难易程度,整套考卷的难易比例分配不会有变化,还是7:2:1,但今年的整体难度可能会比往年大一点儿,因为去年和前年的高考题相对比较简单。20__年高考试题的难度总体上不会有大的变化,高考试题的策划和设计上同样不会有较大的变化,将继续体现大纲卷向课改卷的平稳过渡。
高三学生的寒假时间虽然比较短,但是同样要制订好学习计划,而且最好针对每一科都有详细的计划。
就数学这一科来说,查漏补缺是最为重要的,寒假的数学复习,要针对每位学生的实际,全面落实考点,构建知识网络,掌握高考数学的知识体系,对没学好的章节内容各个击破,补全补牢不透彻的知识点;再就是学习好各种解题技能技巧,拓展解题思路,理清数学方法在解题中的应用。
复习以往的错题也是寒假数学复习的重要方法。
抽出一点时间,将平时各类大大小小考试的卷子都拿出来,把错误的题目再订正一遍,最好把错题分类整理在一个错题本上。有些同学会觉得麻烦,实际上,当你一道错题整理出来后,你会发现比你匆忙地去做10道题效果更好。高三学生一定要珍惜“错误”,弄清错误的原因。因为只有牢固掌握基础知识、基本方法,才能获得数学学习的通解和通法。而在明确解题思路的错误后,才能真正巩固所学的知识。
高考数学科目中,占比最大的仍然是基础知识。包括优秀学生在内的任何一个学生,其复习质量高低的关键都在于是否切实抓好基础。函数、不等式、数列、三角、立体几何中的空间线面关系、解析几何中的曲线与方程是高中数学的主干知识,也是高考的重点,这些地方有明显漏洞必须首先弥补。抓基础不是把书上的结论看一遍,高三复习仍要强调理解知识的来源及其所蕴含的数学思想、数学方法,把握知识的横纵联系,在理解的基础上实现网络化并牢固熟练地记忆。抓基础离不开做题,要通过解题的思考过程(解题中模糊想法的澄清,不同想法的比较分析)并结合解题研读课本,深入理解基础知识。
做题是很多学生喜欢的复习方法,但是此时不应再盲目做题,需要重质而不是重量。
高考数学考试的一个特点是研究题目就可以获得解题的方法,所以不建议高三学生在寒假期间再做模拟题,而应该在寒假期间对最近几年的真题进行分析研究,总结出一些解题的方法。对于平时数学成绩较好的学生来说,学会总结学习的思维,做到快速解题,把所有的题目固定成一种思维,同时总结出变型的主要原则。对于平时数学成绩不太理想的学生来说,这个时候还是应以课本知识点理解为主,在做历年的真题时,结合课本看哪些方面是没有掌握的,根据题目把课本上涉及的知识点标出来。看看这些知识点在应用的时候有何先决条件,知识点如何反向应用,具体的解题过程中在何处卡壳。
希望高三的学生在计划中订立短期目标与长期目标,短期目标就是每天熟记5至10个常用公式,做5道例题,一套综合卷子等;长期目标则是双基考试、一模考试、二模考试、高考中能取得什么样的进步。
数学学习计划2
一、第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
二、第二阶段复习计划:
复习高数书上册第二章1—3节,需达到以下目标:
1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求简单函数的高阶导数。
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
三、第三阶段复习计划:
复习高数书上册第二章 4—5节,第三章1—5节。需达到以下目标:
1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。
3、掌握用洛必达法则求未定式极限的方法。
4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
四、第四阶段复习计划
复习高数书上册第四章 第1—3节。需达到以下目标:
1、理解原函数的概念,理解不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
五、第五阶段复习计划
复习高数书上册第五章第1—3节。达到以下目标:
1、理解定积分的.几何意义。
2、掌握定积分的性质及定积分中值定理。
3、掌握定积分换元积分法与定积分广义换元法。
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
六、第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。
2、掌握定积分换元法与定积分广义换元法。 会求分段函数的定积分。
3、掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
数学学习计划3
给你一些具体方法:
聪明和敏捷对于数学学习来说固然重要,但良好的学习方法可以把学习效果提高几倍,这是先天因素不可比拟的。学好数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.预习。
不等于浏览。要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习。
二.听讲。
核心在课堂。1.以听为主,兼顾记录。2.注重过程,轻结论。3.有重点。4.提高听课效率。
三.复习。
像演电影一样把课堂复习,整理笔记,
四.多做练习。
晚上吃饭后,坐到书桌时,看数学最适合
2.做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,
3.不要粗心大意,
4.做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,
5.解题都有固定的套路。
6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。
要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通
2.建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。
3.周末再将一周做的题回头看一番,提出每道题的思路方法
4有问题一定要问。
六.考前复习
前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。
2.要重视基础
另外,听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
数学学习计划4
1、针对自己的薄弱学科的学习态度、学习方法、学习目标进行反思,调整。
2、在家长的指导下,写好自己切实可行的暑假生活、学习计划。(安排好每天复习进度的明细内容)
3、把练习卷上做正确的题目进行整理,确认自己已经掌握了哪些知识,具备了哪些运用能力,树立自己对本学科的信心。
4、把练习卷上做错的题目进行整理、抄录,打开教科书,逐题进行分析,找到错误的关键之处,进行认真的订正后,再到教材上找到相关类型的题目,进行练习、强化。(尽可能用自己的力量解决问题)
5、遇到无法解决的困难,按教科书的学习顺序进行梳理罗列。了解自己学习问题的共性薄弱点,然后可以请老师一起帮助解决。
6、每周二次带着学科的不懂之处和老师一起分析、解决问题。回家后运用老师解决问题的方法进行自我强化练习,填补自己的学习漏洞。(这一点必须按照教材由浅入深的学习顺序,切不可东一榔头西一棒的无序)
7、每次完成习题的订正,将错题订正的全过程,牢牢地记在脑海里(背出),渐渐地形成解题方法的量的积累。
8、一星期打两次球,游三次泳,增加运动,提高体能。(也可以听音乐等,做自己有兴趣的事)
9、一星期跟着父母学做两次家常菜,如炒茄子,蒸鱼之类,再做一些力所能及的家务。
数学学习计划5
这次的高一数学期末考试,是全市高中统考,试卷要拿到区里统改,并要进行全区排名。为了做好复习迎考工作,使备课组活动做到有目的、有步骤地进行,与城里的高中缩小差距,特制定如下复习计划:
一、指导思想
做好高一数学复习课教学,对大面积提高教学质量起着重要作用。高一数学期末复习应达到以下目的:
(1)使所学知识系统化、结构化、让学生将一学期来的数学知识连成一个有机整体,更利于学生理解;
(2) 少讲多练,巩固基本技能;
(3)抓好方法教学,归纳、总结解题方法;
(4)做好综合题训练,提高学生综合运用知识分析问题的能力。
二、 明确复习范围及重点
范围:必修1与必修4
重点:必修1:函数的基本性质,指数函数,对数函数;必修4:三角函数,平面向量。
三、复习要求
1、重点复习掌握核心概念、基础知识、强调作图、解题规范;
2、围绕综合卷加强对差生的个别辅导、面批,争取提高合格率。
四、复习要点:
掌握各章知识结构和要点、知识点、澄清概念、解决疑难问题。
习题归类,解题思路、方法,从解题中对知识加深理解、掌握,提高分析问题,解决问题的能力
五、具体课时安排
由于教学时间紧,按照计划估计要到12月31号才能结束新课,复习时间大约8天左右,巩固练习主要是让学生在课下完成,上课讲评。具体安排如下:
20__年元月1日前结束新课;
2日------6日复习必修1:集合(1天)、函数(2天);
7日------8日复习必修4:三角函数(1天)、平面向量(1天); 9日------10日必修1、4综合训练。
六、复习方法
1、根据学生的薄弱点,有针对,有系统地设计4份复习案,其中集合与函数2份,三角函数与平面向量2份,综合训练试卷4份。
2、利用星期二、五早读课时间对优生进行补短,主要是补基础知识,看学生基础知识有没有记住,记住了会不会应用,再找一些基本题让学生练。
3、时间很紧,要求我们稳扎稳打,让每一节课都高效,每节课的导学案都当堂完成,晚自习让学生处理更多的典型题。