欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

初一上册数学重点知识点最全整理

一网宝 分享 时间: 加入收藏 我要投稿 点赞

同学们学数学要记录老师给的例题,老师是很有经验的,他们给的例题都是有一定的代表性的,把例题研究透对于数学成绩的提高是有很大的助益的。下面是小编为大家整理的有关初一数学上册重点难点知识汇总,希望对你们有帮助!

初一数学上册重点难点知识汇总

第一章

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的`有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

初一数学上册有理数知识点汇总

一、目标与要求

1.了解正数与负数是从实际需要中产生的。

2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

4.了解倒数概念,会求给定有理数的倒数;

5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法

二、重点

正、负数的概念:

正确理解数轴的概念和用数轴上的点表示有理数;

有理数的加法法则;

除法法则和除法运算。

三、难点

负数的概念、正确区分两种不同意义的量;

数轴的概念和用数轴上的点表示有理数;

异号两数相加的法则;

根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

四、知识框架

初一数学上册知识点:有理数

五、知识点、概念总结

1.正数:比0大的数叫正数。

2.负数:比0小的数叫负数。

3.有理数:

(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:

初一数学上册知识点:有理数

4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

5.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。

6.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的.距离;

(2)绝对值可表示为:

初一数学上册知识点:有理数

绝对值的问题经常分类讨论;

7.有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数>0,小数-大数<0.

8.互为倒数:乘积为1的两个数互为倒数;

注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

9. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

10.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;

(2)加法的结合律:(a+b)+c=a+(b+c)。

11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

12.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

13. 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;

(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac 。

14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

15.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。

16.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

17.科学记数法:

把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

20.混合运算法则:先乘方,后乘除,最后加减。


精选图文

221381