欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

2021成人高考数学知识点

一网宝 分享 时间: 加入收藏 我要投稿 点赞

数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。接下来小编在这里给大家分享一些关于成人高考高等数学二知识点,供大家学习和参考,希望对大家有所帮助。

成人高考高等数学二知识点

篇一

连续

1、知识范围

(1)函数连续的概念

函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类

(2)函数在一点处连续的性质

连续函数的四则运算、复合函数的连续性、反函数的连续性

(3)闭区间上连续函数的性质

有界性定理、值与最小值定理、介值定理(包括零点定理)

(4)初等函数的连续性

2、要求

(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

(2)会求函数的间断点及确定其类型。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。

一元函数微分学

(一)导数与微分

1、知识范围

(1)导数概念

导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系

(2)求导法则与导数的基本公式

导数的四则运算、反函数的导数、导数的基本公式

(3)求导方法

复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数

(4)高阶导数

高阶导数的定义、高阶导数的计算

(5)微分

微分的定义、微分与导数的关系、微分法则一阶微分形式不变性

2、要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用

1、知识范围

(1)微分中值定理

罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理

(2)洛必达(L‘Hospital)法则

(3)函数增减性的判定法

(4)函数的极值与极值点值与最小值

(5)曲线的凹凸性、拐点

(6)曲线的水平渐近线与铅直渐近线

篇二

函数

1、知识范围

(1)导数概念

导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系

(2)求导法则与导数的基本公式

导数的四则运算、反函数的导数、导数的基本公式

(3)求导方法

复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数

(4)高阶导数

高阶导数的定义、高阶导数的计算

(5)微分

微分的定义、微分与导数的关系、微分法则一阶微分形式不变性

2、要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

成人高考高等数学学习方法

掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。

成人高考高等数学二学习技巧

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。


精选图文

221381