想要学好数学,一定要多看例题,在看例题的过程中,大脑会将已有概念具体化,使对知识的理解更深刻,更透彻。下面是小编整理的小学六年级数学第五单元知识点,仅供参考希望能够帮助到大家。
小学六年级数学第五单元知识点
1、数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
2、统计种类:单式统计表:只含有一个项目的统计表。复式统计表:含有两个或两个以上统计项目的统计表。百分数统计表不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
3、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
4、条形统计图优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
5、折线统计图不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
6、扇形统计图
(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数,
2)优点:很清楚地表示出各部分同总数之间的关系。
3)制扇形统计图的一般步骤:
a)先算出各部分数量占总量的百分之几。
b)再算出表示各部分数量的扇形的圆心角度数。
c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
小学数学等式的性质
1等式性质
性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b,那么a+c=b+c
性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)
性质3:等式具有传递性。
若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4
2等式性质意义
等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。
数学角的度量知识点
1、直线、射线、角
没有端点,可以向两端无限延伸,这种线叫直线。
只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
2、角的计量单位是“度”,用符号“°”表示。把半圆平分成180等份,每一份所对的、角的大小是l度。记做1°
3、角的大小与角的两边画出的长短没关系。角的`大小要看两条边叉开的大小,叉开得越大,角越大。
4、小于90°的角叫做锐角
直角=90°,
大于90而小于180°的角叫做钝角,
平角=180°=2个直角,周角=360°=2个平角=4个平角
特别注意:因为直线射线都无法度量,所以在判断题中,与直线射线比较长短的都是错误的。
平行四边形对角相等,邻角和等于180°,只需要量一个角的度数,就可以知道其他几个角的度数,
5、角的个数=n×(n-1)÷2
n为边的条数。数线段的方法也如此。
6、75度=45度+30度
15度=60度-45度=45度-30度
120度=30度+90度
150度=60度+90度
135度=90度+45度
北师大版数学六年级下册第四单元知识点
上一篇:小学六年级数学第五单元知识点