想要学好数学,一定要多看例题,在看例题的过程中,大脑会将已有概念具体化,使对知识的理解更深刻,更透彻。下面是小编整理的必修五数学解三角形知识点,仅供参考希望能够帮助到大家。
必修五数学解三角形知识点
判断解法
已知条件:一边和两角
一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。
已知条件:两边和夹角
一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。
已知条件:三边
一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。
已知条件:两边和其中一边的对角
一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)
①若a>b,则A>B有唯一解;
②若b>a,且b>a>bsinA有两解;
③若a<bsina则无解。< p="">
常用定理
正弦定理
a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。
变形公式
(1)a=2RsinA,b=2RsinB,c=2RsinC
(2)sinA:sinB:sinC=a:b:c
(3)asinB=bsinA,asinC=csinA,bsinC=csinB
(4)sinA=a/2R,sinB=b/2R,sinC=c/2R
面积公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)
余弦定理
a²=b²+c²-2bccosA
b²=a²+c²-2accosB
c²=a²+b²-2abcosC
注:勾股定理其实是余弦定理的一种特殊情况。
变形公式
cosC=(a²+b²-c²)/2ab
cosB=(a²+c²-b²)/2ac
cosA=(c²+b²-a²)/2bc
数学二元一次方程组知识点
1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
(1)代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
高三数学知识点有哪些
1、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
7、向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
8、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
9、对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差数列。
10、an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
数学必修四知识点总结平面向量
上一篇:必修五数学解三角形知识点
下一篇:数学必修四三角恒等变换知识点