欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

北师大版五年级下册数学知识点

一网宝 分享 时间: 加入收藏 我要投稿 点赞

学习不是一昧的埋头苦学,我们要有学习的方向和学习的重点,只有搞清楚该学什么,我们才能快速掌握知识。为了让您在写的过程中更加简单方便,一起来参考是怎么写的吧!下面给大家分享关于五年级数学主要知识点,欢迎阅读!

五年级数学主要知识点总结

知识点一:

1、计算小数加法先把小数点对齐,再把相同数位上的数相加

2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:

积中小数末尾有0的乘法。 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。如:3.60 “0” 应划去

知识点三:

如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04

知识点四:

计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:

小数乘整数与整数乘整数有什么不同?

1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

五年级数学主要知识点归纳

1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

如:1.5×3 表示 1.5 的 3 倍是多少或 3 个 1.5 的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中 一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

如:1.5×0.8 就是求 1.5 的十分之八是多少。

1.5×1.8 就是求 1.5 的 1.8 倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的 0 要去掉,把小数化简;小数部分位数不够时,要用 0 占位。

3、规律(1)(P9):一个数(0 除外)乘大于 1 的数,积比原来的数大;

一个数(0 除外)乘小于 1 的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

减法:减法性质: a-b-c=a-(b+c) a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】

除法:除法性质: a÷b÷c=a÷(b×c)

五年级数学主要知识点整理

一、学习目标:

1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

3.理解用字母表示数的意义和作用;

4.理解简易方程的意思及其解法;

5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

二、学习难点:

1.能正确进行乘号的简写,略写;小数乘法的计算法则;

2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

4.构建初步的空间想象力;

5.用字母表示数的意义和作用;

6.多边形面积的计算。

三、知识点概念总结:

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化:

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类:

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤:

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法:

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围:

小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

20.三角形面积公式:

S△=1/2_ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式:

(1)梯形的面积公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2.


221381