初一上册数学知识点总结最新有哪些你知道吗?数学是解决生活问题的钥匙,学数学就是为了学会应用,学会生活。只要我们细细感悟,就会发现数学就在我们的身边。一起来看看初一上册数学知识点总结最新,欢迎查阅!
初一上册数学知识点总结
第一章 有理数
(一)正负数1.正数:大于0的数。2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。3.乘法交换律:ab=ba
4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1.整式:单项式和多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3.系数:一个单项式中,数字因数叫做这个单项式的系数。4. 次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5.多项式:几个单项式的和叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
初中数学成绩如何提高
1、换个方式看例题
那些看课本和课本例题一看就懂,一做题就懵的学生一定要看这条!
不少学生看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
2、探究出题的目的
数学能力的提高离不开做题,“熟能生巧” 这个简单的道理大家都懂。
但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。
一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。从这个角度去领悟题,不仅可以快速的找到解题的突破口,而且不容易进入出题老师设置的陷阱。
3、学会优化解题过程
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。
不要仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。
在做选择题时,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
4、分析试卷,总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
① 遗憾之错。就是分明会做,反而做错了的题;② 似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等。③ 无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。
原因找到后就消除遗憾、弄懂似非、力争有为,切实解决“会而不对、对而不全”的老大难问题。
5、错一次反思一次
每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。
因此平时注意把错题记下来,做错题笔记包括三个方面:
① 记下错误是什么。最好用红笔划出。② 错误原因是什么。从审题、题目归类、重现知识和找出答案四个环节来分析。③ 错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。
你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在中考时发生错误的概率就会大大减少。
6、把好的做法形成习惯
好的习惯终生受益,不好的习惯终生后悔、吃亏。
如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作中考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。
如何提升数学成绩
1、换个方式看例题
那些看课本和课本例题一看就懂,一做题就懵的学生一定要看这条!
不少学生看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
2、探究出题的目的
数学能力的提高离不开做题,“熟能生巧” 这个简单的道理大家都懂。
但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。
一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。从这个角度去领悟题,不仅可以快速的找到解题的突破口,而且不容易进入出题老师设置的陷阱。
3、学会优化解题过程
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。
不要仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。
在做选择题时,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
4、分析试卷,总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
① 遗憾之错。就是分明会做,反而做错了的题;② 似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等。③ 无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。
原因找到后就消除遗憾、弄懂似非、力争有为,切实解决“会而不对、对而不全”的老大难问题。
初一上册数学知识点总结最新相关文章:
★ 初一数学上册知识点归纳
★ 初一上册数学知识点归纳整理
★ 初一数学上册知识点总结
★ 初一数学上册知识点
★ 初一人教版数学上册知识点总结归纳
★ 初一数学上册重点知识整理
★ 初一数学上册知识点汇总归纳
★ 初一数学知识点归纳与学习方法
★ 七年级数学上册知识点汇总
★ 初一上学期数学知识点归纳
初一上册数学知识点最新
上一篇:初一上册数学知识点总结最新
下一篇:2022初中物理力学复习提纲