欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

2022高中历史万能答题模板大全

一网宝 分享 时间: 加入收藏 我要投稿 点赞

数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。所以掌握一些解题技巧很重要。下面是小编为大家整理的关于高中数学题型分析解题方法_高中数学知识点,希望对您有所帮助。欢迎大家阅读参考学习!

高中数学题型分析解题方法


目录

高中数学题型分析解题方法

高中数学知识点总结

如何提升高中数学成绩


高中数学题型分析解题方法

数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。所以掌握一些解题技巧很重要。

许多同学由于答题战略上的错误,最后题没答完,难题没答上,容易得分的题目没时间答。因此,很多专家曾经提出“制定得分计划”的观点。也有的专家认为“高考与其说是考能力,不如说是考时间。”对于某些同学,甚至要敢于舍弃一部分题目。要“动笔就有分,有效答题。”因此提高答题效率,合理分配时间,确是理综考试成败的关键。

解题方法

“换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答。在解题过程中,把题中某一式子如f(_),作为新的变量y或者把题中某一变量如_,用新变量t的式子如g(t)替换,即通过令f(_)=y或_=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法。

用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(_)=y或_=g(t)。就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧。

解题要点

做好填空和选择题都是至关重要的。这两部分占了54分,而且题目不难,只要求考生不要粗心,杜绝低级错误,毕竟和后面的大题相比,这里的4分显然太容易了。对于后面的大题,考生首先不要有心理障碍,因为大题的题型很固定的,都是平日里做过多遍的,建议考生在考试前两天从自己以前的错题中找3-5题认真做一遍,考完语文的间隙,也可以再做一题,这样可以保持好的状态,对考试发挥很有作用。

一定按规范答题会得高分,答题时用0.5毫米黑色签字笔书写,因为扫描时试卷模糊就会失分;要在规定区域内答题,不然机器会切掉答案。防止在答题过程中出现错字、别字、漏字,不能犯这些常规错误。

解答步骤

合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。

有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

>>>返回目录

高中数学知识点总结

高中数学知识点总结及公式:圆的公式

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(pi)r

4、圆的标准方程(_-a)2+(y-b)2=r2【(a,b)是圆心坐标】

5、圆的一般方程_2+y2+d_+ey+f=0【d2+e2-4f>0】

高中数学知识点总结及公式:椭圆公式

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高中数学知识点总结及公式:等差数列

1、等差数列的通项公式为:an=a1+(n-1)d (1)

2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.

3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1

高中数学知识点总结及公式:等比数列

1、等比数列的通项公式是:An=A1_q^(n-1)

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N_,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.

在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;

②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.

抛物线

1、抛物线:y=a__+b_+c就是y等于a_的平方加上b_再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(_+h)_+k就是y等于a乘以(_+h)的平方+k,-h是顶点坐标的_,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2p_它表示抛物线的焦点在_的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为_=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2p_y^2=-2p__^2=2py_^2=-2py。

高中数学知识点总结及公式:点、直线和平面的位置关系

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。

公理2:过不在同一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4:平行于同一条直线的两条直线互相平行。

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

一、平面的基本性质及应用

1.平面的基本性质

2.等角定理

二、空间两直线的位置关系

1.空间两直线位置关系的分类

2.异面直线所成的角

(1)异面直线所成角的定义

三、空间直线与平面、平面与平面的位置关系

1.直线与平面、平面与平面位置关系的分类

(1)直线和平面位置关系的分类

(2)平面和平面位置关系的分类

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行——没有公共点;

(2)两个平面相交——有一条公共直线.

3.常用结论

(1)唯一性定理

①过直线外一点有且只有一条直线与已知直线平行.

②过直线外一点有且只有一个平面与已知直线垂直.

③过平面外一点有且只有一个平面与已知平面平行.

④过平面外一点有且只有一条直线与已知平面垂直.

(2)异面直线的判定方法

经过平面内一点的直线与平面内不经过该点的直线互为异面直线.

>>>返回目录

如何提升高中数学成绩

1.认真听讲,课后及时做题巩固。数学必须听老师讲课,老师的每一堂课,都必须认真听,不能做其他,也不能自学,老师的讲课肯定比你自己自学强太多,很容易启发你的数学思维,效率很高,因此,无论是老师讲教材还是讲题,都要认真听,搞懂每一个老师要求你必须会的题和知识点。课后,必须及时做相应的题巩固,多做多练。因为,很多课堂上和教材上的题感觉都明白了,很简单,但实际上,你做对应的习题册的题感觉是很不同的,还会发现很多疑问和错误,只有通过习题册一系列做题后,你才能真正称得上是掌握了这个知识点。

2.学习要有计划。数学题型很多,集中做题,任何人都坚持不下去,因此,我们要日积跬步,小步快跑,依靠时间去解决大量的做题任务,每年365天,实际上时间很多,但是必须要求我们每一天都要坚持做一些题,这样,长期积累,做题量是很巨大的,成绩成长自然也会巨大,因此,我们要给自己的没一个月,每一周,每一天都规定一定的做题任务,按照计划,每天、每周完成一个任务,打一个勾。(自己找个小笔记本,用作学习计划本,每个学科都应该有计划,汇总到这个本子上)

3.重视月考等综合考试。考试要好好考,千万不要照抄,否则对自己的学习很不好,就算所有人都抄,自己也不要抄,一定要依靠考试检查自己的真实水平。每次考试都是修正自己的复习计划和学习薄弱环节的契机。寻找到薄弱环节后,重点加强做题量,优势环节的题,则可依据实际情况,今后少做或者不做。

>>>返回目录


高中数学题型分析解题方法_高中数学知识点相关文章

★ 高中数学常用的解题方法

★ 高中数学解题方法技巧大全

★ 高中数学解题方法汇总

★ 常用的高中数学解题方法

★ 高中数学大题答题方法

★ 高中数学解题技巧有哪些

★ 高中数学解题方法大全

★ 高中数学解题的技巧

★ 高一数学九大解题技巧

★ 高二数学试卷分析

221381
领取福利

微信扫码领取福利

微信扫码分享