数学学习记忆点很多也很抽象,学生常常会因此出现很多的学习错误,下面是小编给大家带来的中考数学复习的五大误区,希望能够帮助到大家!
中考数学复习的五大误区
误区一:“一听就懂,一做就错或不会”
这是在数学学习过程中常常出现的现象,在课余经常能够听到同学们反映这个问题。为什么同学们在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型,就感到无所适从呢?
这说明上课听懂还停留在“听懂”这一初级层次上,而还没学会举一反三,用知识解决问题。这要求同学们把数学知识在头脑中加工重组,构建成更高的层次,这也是每位同学必须达到的要求。
上课时,老师举的例题是范例,但我们更应该从中学会思维训练的方法。作为学生不应该只学会题中的知识,更要学会领悟解题思路与技巧,以及蕴藏其中的数学思想方法。
针对这种情况,同学们可以试试下面这个方法:
第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;
第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?
第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?
第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。
误区二:“多做题就能提高成绩,概念不重要”
有不少的同学认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?原因一般就在于对于知识概念不清晰。数学概念是学习数学的基础,如果概念不清,往往会导致认识、理解偏差,解题出错。
例如,对正、负数概念的理解。在同学们刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念更深层次的理解,就将导致出现 “-a是负数”,“a>-a”,“a+b≥a” 等一系列错误。
这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易!调整策略如下:
第一步:记住概念,理解概念;
第二步:“咬文嚼字”,抓住关键词,吃透概念;
第三步:联系前后相关知识,深入理解概念;
第四步:对照题目条件,联想、对比相应概念;
第五步:积累经验,精选题目,注意类型,勤于总结。
误区三:“多做题目总能遇到考题”
有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。
解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。调整策略如下:
第一步:花点时间整理最近解题的题型与思路;
第二步:思考这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?
第三步:善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。
如:在“无理方程”的教学中,归纳出解法:① 去分母法;② 换元法。对于换元法给予归纳出两种常见的题型:A平方型;B倒数型。
又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“F”,内错角找字母“N”,同旁内角找字母“L”。只有不断的总结,才能有创新和发展。
误区四:“对于数学公式,记住并会套用就行”
这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也有“失灵”的时候,多出现在以下几种情况中:一是所给题目条件有限制,不能完全适用于公式;二是公式本身也有限制条件,并非适用所有题目的求解。
如:解方程(a+1)x2-2x+5=0 。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“a+1”是否为0作出讨论,分别就两种情况求解。
调整策略:
第一步:不仅记住公式,更要记住公式的适用条件与范围;
第二步:对照公式,仔细审题,看清哪些适用,哪些需另做讨论。
误区五:“多做难、偏、怪题,就能提高成绩”
学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。
可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。
调整策略:
以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。
中考数学的七大易错考点
考点 1:
相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求: 理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意: 被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:
三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:
向量的有关概念
考点 7:
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
中考数学8大易错点
上一篇:中考数学复习的五大误区
下一篇:初中数学知识点整理: