欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

四年级线和角数学日记优秀范文

一网宝 分享 时间: 加入收藏 我要投稿 点赞

数学家是指一些对数学有深入了解的人士,将其所学知识运用于其工作上。下面是小编为大家整理的数学家的故事数学日记500字,一起来看看吧,希望对你们有帮助。

数学家的故事数学日记500字1

秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。

在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。 因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的时间领先,其实想法的成熟,还有待提高。为了解决 “孙子问题”中的不足,秦九韶推广了“孙子问题”的解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。

数学家的故事数学日记500字2

约瑟夫·路易斯·拉格朗日(1736-1813),18世纪的伟大科学家。他在数学、力学和天文学三个学科中都有历史性的重大贡献,但尤以数学方面的成就最为突出,拿破仑曾称赞他是“一座高耸在数学界的金字塔”,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用。

拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。1813年4月10日,拉格朗日因病逝世,走完了他光辉灿烂的科学旅程。他那严谨的科学态度,精益求精的工作作风影响着每一位科学家。而他的学术成果也为高斯、阿贝尔等世界著名数学家的成长提供了丰富的营养。可以说,在此后100多年的时间里,数学中的很多重大发现几乎都与他的研究有关。

数学家的故事数学日记500字3

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

有一天高斯的数学教师情绪低落的一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”

结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”

高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

数学家的故事数学日记500字4

罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

数学家的故事数学日记500字5

1785年,8岁的小高斯在德国农村的一所小学里念一年级。

数学老师是城里来的。他有一个偏见,总觉得农村孩子不如城里孩子聪明。不过,他对孩子们的学习,还是严格要求的。他最讨厌在课堂上不专心听讲、爱做小动作的学生,常常用鞭子敲打他们。孩子们到爱听他的课,因为他经常讲一些非常有趣的东西。

有一天,他出了一道算术题。他说:你们算一算,1加2加3,一直加到100等于多少?谁算不出来,就不准回家吃饭。 说完,他就坐在椅子上,用目光巡视着趴在桌上演算的学生。

不到一分钟的工夫,小高斯站了起来,手里举着小石板,说:老师,我算出来了......

没等小高斯说完,老师就不耐烦的说:不对!重新再算!

小高斯很快的检查了一遍,高声说:老师,没错!说着走下座位,把小石板伸到老师面前。

老师低头一看,只见上面端端正正的写着5050,不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间就算出了正确的得数。要知道,他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。就问小高斯:你是怎么算的?小高斯回答说:我不是按照1、2、3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101,2加99时101,3加98也是101......一前一后的数相加,一共有50个101,101乘50,得到5050。

小高斯的回答使老师感到吃惊。因为他还是第一次知道有这种算法。他惊喜的看着小高斯,好像刚刚才认识这个穿着破烂不堪的,砌转工人的儿子。

不久,老师专门买了一本数学书送给小高斯,鼓励他继续努力,还把小高斯推荐给当地教育局,使他得到免费教育的待遇。后来,小高斯成了世界著名的数学家。 人们为了纪念他,把他的这种计算方法称为高斯定理。

数学家的故事数学日记500字6

1251年,史天泽驻守真定,他兴教育,劝农桑,广纳贤士。在秋高气爽的暮色中,一位59岁的儒士在学子们的簇拥下踏上了真定路栾城县的故土,他就是金元之际最伟大的数学家李冶。

李冶家学深厚,博览群书,兼修文学、史学、数学、经学。时人称赞他“经为通儒,文为名家”。

李冶(1192~1279),字仁卿,号敬斋,元代真定路栾城县(今石家庄市栾城区)人。他出生的年代,正是金朝由盛而衰的历史时期。李冶父亲李?是位博学多才的学者,在大兴府尹胡沙虎手下任推官,母亲姓王。

泰和八年(1208年),蒙古成吉思汗的军队开始向金朝进攻。李?的上司胡沙虎是金朝臭名昭著的大权奸,“声势炎炎,人莫敢仰视”,动辄打骂同僚,甚至“虐杀不辜”。李?常据理力争,置个人生死祸福于度外。但行走于虎狼之室,不得不小心。他为防不测,把妻儿送回故乡栾城。少年李冶,就到栾城邻县元氏封龙书院求学。

至宁元年(1213年)胡沙虎篡权乱政,李?被迫辞职,隐居阳翟(今河南禹县),从此不再过问政事。吟诗作画,颇有名声。父亲的正直为人及好学精神对李冶深有影响。

李冶儿时本名李治,为什么改名李冶?后世有两种解读。一说李冶成年后熟读史书,感慨唐高宗李治助长武则天专权,导致大唐沦为武周,耻与李治同名,故改名李冶。一说金朝曾推崇儒学,禁止平民和古代帝王同名,李冶就把李治减去一点,改名叫李冶。

李冶自幼聪敏,博览群书,兴趣广泛,对文学、史学、数学、经学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”李冶常说:“积财千万,不如薄技在身。”又说:“金璧虽重宝,费用难贮储。学问藏之身,身在则有余。”他年轻时曾与好友元好问一起外出求学,拜文学家赵秉文、杨文献为师。

正大七年(1230年),李冶赴洛阳应试,被录取为词赋科进士,一举成名,时人称赞他“经为通儒,文为名家”。

国破家亡的命运,使李冶决绝了仕途,潜心研究学问。

李冶得中进士,本是走向成功的标志,同年踏进仕途,被授予高陵(今陕西高陵)主簿,但此时金王朝已日薄西山,而崛起于草原的蒙古汗国已日渐强大,成吉思汗之子窝阔台即位后,出兵攻入陕西,李冶任职属地被蒙古军队占领,所以,他被调往钧州(今河南禹县)任知事。公元1232年正月,蒙古军绕过军事重镇潼关(今陕西潼关县北),东下汴京(今河南开封),在三峰山大战,金军大败,不几日,蒙古军攻破钧州城,李冶不愿投降,就换上平民服装,北渡黄河进入山西,这是他一生的重要转折点。仕途的悲凉,国土的沦丧,使得李冶从此走上了流亡之路。

李冶辗转到了山西的忻县、崞县(今山西宁武、原平)之间,过着“饥寒不能自存”的生活。

公元1234年正月,金哀宗完颜守绪传位于完颜承麟后自缢而死。末帝完颜承麟也被乱兵所害,金朝灭亡。

国破家亡的命运,使李冶决绝了仕途,只能潜心研究学问。年过四十岁的李冶经过颠沛流离后,定居崞县桐川。他虽生活艰苦,但有充足的时间研究学问。漫漫人生路,何处是归途?李冶就在各种学问中充实自己,涉及数学、文学、历史、天文、哲学、医学等。李冶不仅有先进的哲学思想,而且在极为艰苦的条件下坚持做学问。他在桐川的居室十分狭小,常常不得温饱,要为衣食奔波。但他却以著书为乐,潜心学问。他的学生焦养直说他“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日废其业”,“手不停披,口不绝诵,如是者几五十年”。

同时代的学者砚坚评价李冶,只要目睹世间之书,无不熟读,从不遗漏。

数学虽被古人排在六艺之末,但李冶认为,数学是最有用的学问,于是他致力于数学研究。

1248年,李冶写成了中国古代数学名著《测圆海镜》,这是中国古代代数学具有划时代意义的著作,是用“立天元一为某某”(即当代数学设x为某某)解析高次方程的数学专著。后世学者们研究认为,李冶这部代数学著作,比欧洲代数高次方程理论要早300多年,是13世纪世界最先进的代数学理论专著。

金元之际,正是天元术启蒙的时代。天元术是用数学符号列方程的方法。中国列方程的思想可追溯到东汉的《九章算术》。其中第8章《方程》,用文字叙述方法建立二次方程,但没有明确的未知数。唐代王孝通《缉古算术》已能列出三次方程,但完全用几何方法推导方程,难度很大,不易被一般人掌握。

宋代以前的方程理论一直受几何思维束缚,方程次数不高于三次,高于三次方程就难以用几何解析了。宋仁宗时任左班殿直贾宪写成《黄帝九章算经细草》9卷、《算法?鹿偶?卷,改进了传统开方法,创造了开方作法本源和增乘开方法,对古代数学理论做出了杰出贡献。在欧洲,法国数学家帕斯卡在17世纪初创造了类似的代数学,但是比贾宪晚了600年左右。

李冶治学,不泥古,不唯书,既善于借鉴前人的成就,又勤于思考。有人问学于李冶,李冶回答:“学有三:积之之多不若取之之精,取之之精不若得之之深。”坚持去其糟粕,取其精华,善于发现,勤于思考。

由于李冶摆脱了几何思维的束缚,在方程解析方面取得了突破,他利用天元术熟练地列出六次方程,并完整解决了分式方程问题,用纯代数方法降低方程次数,他还发明了负号和一套相当简明的小数记法。在国外,直到16世纪末,小数才有了更好的记法。由于李冶掌握了一套完整的数字符号及性质符号,他的方程已能用符号表示,改变了用文字描述方程的旧面貌,可称为“半符号代数”。大约300年后,类似的半符号代数才在欧洲产生。

李冶的《测圆海镜》共12卷,收入170多个问题,都是已知直角三角形中各线段、利用天元术求内切圆和旁切圆的直径问题。第一卷开头,李冶列出了一幅“圆城图式”,提出了170个与“圆城图式”有关的问题,根据已知条件,分别计算出15个直角三角形各边之长,绘出各三角形的容圆公式,计算出勾股和、勾股差,然后计算出勾弦和、勾弦差等。其中19题列出三次方程,13题列出四次方程,还有些题列出六次方程,还成功地用代数方法降低方程次数。《测圆海镜》的成书标志着天元术的成熟,李冶也正是因其在天元术方面的贡献,被后人誉为“宋元数学四大家”。

元代数学家朱世杰说:“以天元演之,明源活法,省功数倍。”清代阮元说:“立天元者,自古算家之秘术;而《海镜》者,中土数学之宝书也。”

李冶既是一代鸿儒,又有实用数学的杰出成就。他曾在封龙书院讲学,学子纷至沓来,以聆听李冶教诲为乐事。

李冶写成《测圆海镜》后,到太原住了一个时期,藩府的官员曾请他出仕为官,他坚决谢绝了。后来,他到了山西平定,在那里,李冶与一代词人元好问受到当地人的敬仰。平定侯聂?也很尊重李冶和元好问,他经常把他们接到自己府邸做客。时人常常将二人并称“元李”。至元二年(1265年),平定州创建“四贤堂”,以祭祀金元时期文坛领袖,“四贤”就是指杨云翼、赵秉文、元好问和李冶,可见李冶在当时名声之高、影响之大。


精选图文

221381