数学交流能力和合作能力。约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,通过让学生通过小组合作、交流,尝试解决问题,下面就是小编给大家带来的小学五年级数学《最小公倍数》优选备课教案三篇,希望能帮助到大家!
小学五年级数学《最小公倍数》优选备课教案一
教学要求①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想
。③培养学生抽象概括与观察思考的能力。
教学重点约数和倍数的意义
教学难点理解除尽和整除,约数和倍数等概念间的联系和区别。
教学过程
一、创设情境
1、计算下面三组题。
(1)23÷7=(2)6÷5=(3)15÷3=
11÷3=1.8÷3=24÷2=
2、观察并回答。
(1)上面哪个算式中的第一个数能被第二个数整除?
(2)在什么情况下,才可以说“一个数能被另一个数整除”?
(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)
3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
①被除数、除数都是整数,除数不等于0
明确三点②商必须是整数缺一不可
③商的后面没有余数
4、除尽与整除的区别与联系。
(1)像6÷5=1.21.8÷3=0.6我们只能说第一个数能被第二个数。
(2)除尽被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。
整除被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)
师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课
题:约数和倍数的意义)
二、探索研究
1.小组学习约数和倍数的意义。
(1)让学生看教材第50页有关约数和倍数的一段话。
(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?
(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?
(4)倍与倍数意义一样吗?
如:15是3的倍数,表示15能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事项。让学生看教材第50页的注意。
三、课堂实践
1.做教材第51页的“做一做”。
2.做练习十一的第1题。
3.做练习十一的第2题。
4.做练习十一的第3题。
5.做练习十一的第4题。
60的约数有。
6的倍数有。
四、课堂小结
学生小结今天学习的内容。
课后反思:
给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。
小学五年级数学《最小公倍数》优选备课教案二
教学内容:九年义务教育六年制小学数学第十册第49页
教学目的:
1、进一步理解和掌握整除的意义。
2、理解、掌握约数和倍数的意义,知道约数、倍数的相互依
存关系,渗透辨证唯物主义思想教育。
3、让学生通过小组合作、交流,尝试解决问题;培养学生的
数学交流能力和合作能力。
4、激发学生的学习兴趣,通过自学、讨论等方式的学习,培
养学生自主学习能力。
教学准备:
1、两张卡片、2、多媒体演示课件
〔评析〕为了体现当今新的教育观,即在课堂教学中,不仅要使儿童掌握一定的数学基础知识和基本技能,同时还要有目的去培养学生的数
学能力。所以制定的目标体系全面、恰当。
教学过程:
一、复习整理、进一步理解和掌握整除的意义
1、整除的含义
①让学生在小卡片上写一道除法算式
②黑板上展示学生的除法算式
〔评析〕学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,这样的学习,可以使学生一开始就处于积极
状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。
③教师提出问题:A、哪一道除法算式的被除数能被除数整除
B、在什么情况下,才可以说“一个数能被另一个数整除”
④让学生分小组合作、交流,解决以上两个问题
⑤学生交流完毕,每小组派代表汇报本小组研究成果
〔评析〕让学生合作、交流,尝试解决问题,这样的教学即给了学生一个人人参与、自主探索的机会,使学生理解和掌握了知识;又使学生
在平等、自由、真诚悦纳的情意关系中学会了与人共处。
2、抽象概括整除的概念
①师:如果用字母a表示被除数,用字母b表示除数,在什么情况下,a能被b整除?
②生:略
③师:让学生完整地概括整除的意义
〔评析〕由于学生对整除的含义有了进一步的理解。所以通过学生讨论,师生对话,抽象概括出整除的概念,这样的教学,符合学生的认知
规律,同时可培养学生的抽象概括能力。
3、巩固练习
①下面哪一组的第一个数能被第二个数整除
17和549和73.6和1.210和10
②下面四个数中谁能被谁整除
2、3、6、12
〔评析〕概念初步后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,增加了开放题,这不仅激发了学生的
学习兴趣,而且又加深了学生对整除的理解
二、新知教学,了解约数和倍数的意义
1、提出问题,看书自学
①在什么情况下,a是b的倍数,b是a的约数。
②约数和倍数中的数一般指什么数?不包括什么数?
③你能仿照书中的(例1)举一个例子,说明一个数是另一个数的倍数,另一个数是这个数的约数
2、学生自学,并回答问题及举例、说明理由。
〔评析〕教师提出问题,学生带着问题去自学,这样的学习,即体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学
能力。
3、明确约数和倍数的关系
根据实例提出问题:45能被15整除,能不能单独说45是倍数、15是约数,为什么?
生:略
师生共同小结:约数和倍数是相互依存的关系,不能单独地说一个数是倍数或约数。
〔评析〕通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能
独立存在。突出了教学的重点,准确地把握了教学关键。
4、巩固练习
①下面每组数中,谁是谁的倍数?谁是谁的约数?
36和97和1445和451和100
②下列数中,谁是谁的倍数?谁又是谁的约数?
1、2、6、12
③游戏
规则:老师出示一个数,看你手中的卡片是否符合老师提出的条件,符合的请举起你的卡片。
a、我是12,12能整除谁?
你们是我的什么数?我又是你们的什么数?
b、我是19,谁是我的约数?
c、我是2,谁是我的倍数?
d、我是1,谁是我的倍数?(小结:1是所有自然数的约数)
e、让全体同学举起卡片,让具有数字6的同学指出自己的约数
〔评析〕练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识
性、趣味性有机地结合。学生兴趣盎然,思维敏捷。通过练习,即巩固了知识,又使全体学生不同程度得到了发展
五、回顾反思,谈各人的收获。
师:今天我们研究了什么?又是怎样研究的?你有什么收获?
〔评析〕让学生总结本节课学习的方法,并谈自己的收获,这个过程不仅使学生明白了许多道理,而且使学生加深了对知识的理解和掌握;
诱发了学生的创造性思维。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。
〔反思〕:素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下
所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式
,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,笔者在设计约数和倍数的意义这一课时,采用了
以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实
践能力的发展有了切实的落脚点。
综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为
学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求
知、参与、成功、交流和自尊的需要。
小学五年级数学《最小公倍数》优选备课教案三
教学目标
1、掌握整除、约数、倍数的概念.
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.
教学重点
1、建立整除、约数、倍数的概念.
2、理解约数、倍数相互依存的关系.
3、应用概念正确作出判断.
教学难点
理解约数、倍数相互依存的关系.
教学步骤
一、铺垫孕伏(课件演示:数的整除下载)
1、口算
6÷515÷323÷7
1.2÷0.324÷231÷3
2、观察算式和结果并将算式分类.
除尽
除不尽
6÷5=1.215÷3=15
1.2÷0.3=424÷2=12
23÷7=3......2
31÷3=10......1
3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.
4、寻找具有整除关系的算式.
板书:15÷3=515能被3整除
5、分类除尽
除不尽
不能整除
整除
6÷5=1.2
1.2÷0.3=4
15÷3=15
24÷2=12
23÷7=3......2
31÷3=10......1
二、探究新知
(一)进一步理解”整除“的意义.
1、整除所需的条件.
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)
6不能被5整除;(商是小数)
1.2不能被0.3整除;(被除数和除数都是小数)
(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:
a、被除数和除数(0除外)都是整数;
b、商是整数;
c、商后没有余数.
板书:整数整数整数(没有余数)
15÷3=5
2、用字母表示相除的两个数,理解整除的意义.
(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?
(板书:a÷b)
学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.
(板书:a能被b整除)
(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)
学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).
3、反馈练习.
(1)下面的数,哪一组的第一个数能被第二个数整除?
29和336和121.2和0.4
(2)判断下面的说法是否正确,并说明理由.
a.36能被12整除.()
b.19能被3整除.()
c.3.2能被0.4整除.()
d.0能被5整除.()
e.29能整除29.()
4、”整除“与”除尽“的联系和区别.
讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?
(举例说明)
(二)约数、倍数的意义
1、类推约数、倍数的意义.
(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.
(2)学生口述:
24能被2整除,我们就说,24是2的倍数,2是24的约数.
10能被5整除,我们就说,10是5的倍数,5是10的约数.
a能被b整除,我们就说a是b的倍数,b是a的约数.
(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)
(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).
2、进一步理解约数、倍数的意义.
(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.
(2)约数和倍数相互依存的关系.
学生明确:约数和倍数是一对相互依存的概念,不能单独存在.
(3)反馈练习:
A、下面各组数中,有约数和倍数关系的有哪些?
16和2140和2045和15
33和64和2472和8
B、判断下面说法是否正确.
a、8是2的倍数,2是8的约数.()
b、6是倍数,3是约数.()
c、30是5的倍数.()
d、4是历的约数.()
e、5是约数.()
3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.
4、教学例2:12的约数有哪几个?
(1)引导学生合作学习,讨论分析.
(2)汇报、板书:
12的约数有:1、2、3、4、6、12
(3)练习:15的约数有哪几个?
(4)学生明确:
一个数的约数是有限的.其中最小的约数是1,的约数是它本身.
5、教学例3:2的倍数有哪些?
(1)引导学生合作学习,讨论、分析.
(2)汇报、板书:
2的倍数有:2、4、6、8、10......
(3)练习:2的倍数有哪些?
(4)学生明确:
一个数的倍数的个数是无限的,其中最小的倍数是它本身.
三、全课小结
这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?
(板书课题:约数和倍数的意义)
四、随堂练习
1、下面的说法对吗?说出理由.
(1)因为36÷9=4,所以36是倍数,9是约数.
(2)57是3的倍数.
(3)1是1、2、3、4、5,...的约数.
2、下面的数,哪些是60的约数,哪些是6的倍数?
3412162460
教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.
3、下面的说法对吗?为什么?
(1)1.8能被0.2除尽.()1.8能被0.2整除.()
1.8是0.2的倍数.()1.8是0.2的9倍.()
(2)若a÷b=10,那么:
a一定是b的倍数.()a能被b整除.()
b可能是a的约数.()a能被b除尽.()
五、布置作业
1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)
101336
2、在下面的圈里填上适当的数.
六、板书设计
约数和倍数的意义
探究活动
2021会计岗位面试自我介绍范文
下一篇:关于医生个人的自我介绍