现在老师有一个平行四边形,我想把它剪成一个尽可能大的长方形,应怎么剪呢?同学们动手试试。一起看看冀教版五年级数学教案!欢迎查阅!
冀教版五年级数学教案1
一、 教学目标
1、 通过动手做,认识平行四边形,三角形和梯形的高。
2、 会用三角板画出平行四边形,三角形和梯形的高。
3、 在方格纸上能画出指定边和这条边上高的长度的平行四边形,三角形和梯形。
二、 重点难点
重点:画平行四边形、三角形和梯形的高。
难点:在方格纸上画指定条件的图形。
三、 教学准备
平行四边形、三角形和梯形、剪刀、三角板
四、 教学设计
(一)情境设计,导入课题
1、 同学们都学过哪些平面图形?( 长方形、正方形、圆……)
2、 现在老师有一个平行四边形,我想把它剪成一个尽可能大的长方形,应怎么剪呢?同学们动手试试。
3、 出示课题《动手做》
(二)自主探究,学习新知
1、 小组内探讨剪切的方法。
2、 师巡视。
3、 小组汇报。
4、 课堂内总结:
(三)认识平行四边形、三角形和梯形高
1、 回忆刚才你们是怎样剪平行四边形的,你们剪得边都是平行四边形的高。
2、 总结:
(1)平行四边形:从一组平行边的一条边上的一点到对边引一条垂线,这条线段叫做平行四边形的高;
(2)三角形:从一个顶点到对应边引一条垂线,这条线段叫做三角形的高;
(3)梯形:从上底的一点到对边(下底)引一条垂线,这条线段叫做梯形的高;
(四)巩固练习
1、 P21试一试第一题。
学生依次标出各个图形中的高是哪条线段,再找出它所对应的底。
2、 P21练一练第一题、第二题。
画出给定底的高。
五、 教学反思
本节课继续从设计上讲,仍然采用小组合作、探索交流的教学形式,先让学生大胆猜测、推导,从自己的演示中寻找解决问题的策略。但在画高时,学生们做的不是很好,主要表现在不会用三角板去画高。
冀教版五年级数学教案2
教学目标:
1.能直接在方格纸上数出相关图形的面积。
2.能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3.在解决问题的过程中体会策略,方法的多样性。
教学重点:
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
教学难点:
如何将整体图形转化为部分的图形。
教具准备:
多媒体课件,作业纸。
教学过程:
一、复习旧知
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的? 对于图1 2 3学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)
二、新授
(一)对图形特征的观察
今天老师带来了一块漂亮的地毯,出示课件
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)
(二)提出问题
1.独立探究
同学们对地毯图案有了充分的认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)
2.合作交流
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3.展示提高
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6.再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角
(学生上台活动)
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米;还有4个3乘3的正方形,面积是36平方米;4个4乘1的长方形,面积是16平方米;中间蓝色面积是2×4=8平方米;总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。
(学生按要求重新说一遍)
生6:上下左右有4个6乘3的长方形,面积是72平方米;每个角还有7格,再乘4是28平方米;加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49-20-2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14-12×4-5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色 部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14-2×2×3×4-4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14-4×2×11
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14-2×2×22。
生14:14×14-4×3×4-4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察
生16:可这些正方形像拉环一样套在一起
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)
师:套在一起,也就是两个正方形之间有一格重叠,图中共有几处重叠?如何解决重叠部分的问题?
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12-8+8.
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)-8+8
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)
三、小结
师:是啊,同学们自己发现找到答案有很多种方法,对于不规则图形面积的计算你有什么好方法,和你的同桌交流一下
四、综合运用
课本第一题:选择自己喜欢的方法来解决问题
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)
第三题 独立解决,并对比两组题,把你的发现写在练习本上
(学生之间进行交流)
冀教版五年级数学教案3
一、 教学目标
1、 能直接在方格图上,数出相关图形的面积。
2、 能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、 在解决问题的过程中,体会策略、方法的多样性。
二、 重点难点
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
三、 教学过程
(一)直接揭示课题
1、 今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、 小组讨论。
3、 汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、 看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、 如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、 学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、 小组内交流、讨论。
4、 全班汇报。
a) 直接一个一个地数,为了不重复,在图上编号;(数方格法)
b) 因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
c) 用总正方形面积减去白色部分的面积;(大减小法)
d) 将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、 师总结求蓝色部分面积的方法。
(三)巩固练习
1、 第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、 第二题。独立解决后班内反馈。
3、 第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
四、 板书设计
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4;(化整为零法)
总面积减去白色面积;(大减小法)
五、 教学反思
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。