欢迎访一网宝!您身边的知识小帮手,专注做最新的学习参考资料!

人教版小学五年级下册数学《3的倍数的特征》教案

一网宝 分享 时间: 加入收藏 我要投稿 点赞

学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。下面是小编给大家整理的人教版五年级下册数学第二单元《质数和合数》教案5篇,希望对大家能有所帮助!

人教版五年级下册数学第二单元《质数和合数》教案1

一、学情分析:

《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。

二、教学目标:

1、理解质数和合数的概念。

2、能熟练判断质数与合数,能够找出100以内的质数。

3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

三、教学重难点:

重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

难点:能运用一定的方法,从不同的角度判断、感悟质数合数。

四、教学过程:

(一)导入新课。找出1~20各数的因数。

你发现了什么?

(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)

今天我们学习的内容就与一个数因数的个数有关。

[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]

(二)新授

探究一:认识质数和合数

师:请同学们按照因数的个数,将这些数分分类。

(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)

师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。

师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?

(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)

师:1是质数吗?

(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)

师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?

(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)

师:1是合数吗?

(学生可能回答:1不是合数,它只有1个因数1。)

小结:1不是质数,也不是合数。

师:你还能找出其他的质数和合数吗?

(学生举例并说明理由)

[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]

探究二:找出100以内的质数,做一个质数表。(课本P14例1。)

(媒体出示图表)

师:你有什么好方法?

(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)

师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?

(学生可能回答:50的倍数,51的2倍是102,超过100了。)

(学生制作100以内的质数表。)

[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]

五、练习

(课本P16∕练习四第一、二题。)

六、小结:

1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。

3、1不是质数,也不是合数。

人教版五年级下册数学第二单元《质数和合数》教案2

【教学目标】

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学 生自主探索、独立思考、合作交流的能力。

4、让学生在学习 活动中体验到学习数学的乐趣,培养学习 数学的兴趣。

【重点难点】

质数、合数的意义。

教学过程:

【复习导入】

1、什么叫因数?

2、自然数分几类? ( 奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课 我们就来学习这种分类方法。

【新课讲授】

1、学习质数、合数的概念。

(1)写出1 ~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数 ,做一个质数表。

(1)提问:如何很快 地制作一张100 以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

人教版五年级下册数学第二单元《质数和合数》教案3

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;位上的数是9的因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

人教版五年级下册数学第二单元《质数和合数》教案4

【教学目标】

1. 使学生理解质数、合数的意义,会判断一个数是质数还是合数。

2. 培养学生观察、比较、归纳、概括的能力。

3. 培养学生勇于实践、探索的学习品质。

【教学重点】

质数和合数的概念。

【教学难点】

正确判断一个数是质数还是合数。

【教学准备】

1. 教具准备:边长1厘米的小正方形若干、小组合作表格。

2. 学具准备: 小字本。

【教学过程】

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生动手在小字本上画一画。

生1:能拼成2个,横着和竖着。

生2:不对,横着和竖着是一样的。

师:你拼出的长方形长是几?宽边呢?

生3:长是3,宽是1。拼成3×1的形状。

根据学生回答教师填写表格。

正方形个数

拼出长方形的个数

长×宽

3

1

3×1

【学生积极动手,虽不知道今天学习什么内容,心中充满了疑惑,但是兴趣都很浓。说明学生是非常喜欢探究的。突破三个同样的小正方形无论这么放都只是一种。】

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生动手画一画。学生各自独立思考后举手回答。并填写表格。

【突破正方形是特殊的长方形,有两种拼法。】

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)并填写表格。

师:看表格,第三列与第一列有什么关系?

生:3和1是3的因数。……

师:第三列改为正方形个数的因数。

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

生:刚才四个正方形能排出两个,如果用5个正方形只能排出1个。

师:一个例子就把你们刚才的结论给否定了。多有说服力的反例!

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种,你觉得当小正方形的个数是什么的时候,只能拼一种?(学生思考着,之后,相互之间展开了热烈的讨论。)

学生举例:3,5,11,13,17……

师:这些数有什么共同的特征?

师:我们发现表示正方形个数的数只有1和它本身两个因数的时候,只能拼成一个长方形,什么情况下拼得的长方形不止一种?

学生举例:4、6、8、9、10、12、14、15……

师:说得完吗?(生:说不完。)

人教版五年级下册数学第二单元《质数和合数》教案5

教学目标:知识与技能:

1、掌握质数和合数的意义。

2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。

3、通过探究质数和合数的意义,培养学生的探究意识和能力。

数学思考:

1、透过实际箱装饮料罐的排列方式,感知生活中有数学。

2、能对现实生活中箱装饮料罐的数字信息作出合理解释。

情感与态度:

1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。

2、在形式多样的练习中,激发学生的学习兴趣。

教具学具:

cai、投影仪、学习单2张,学号数字卡。

教学过程:课前谈话。

如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。

一、生活实例引入

1、观察生活:

(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。

请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)

师:真是这样的吗?

(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。

教师出示4张不同数量装箱的照片: 板书: 9=3×3

9瓶啤酒、12瓶可乐、 12=3×4

15瓶牛奶、24瓶雪碧 15=3×5

24=4×6

学生观察并说一说:9瓶啤酒排成3行3列,9=3×3……

(师板书在黑板右侧)

2、实际数量的多种排列方法,分析可行性:

这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)

板书:9=3×3=1×9

12=3×4=2×6=1×12

15=3×5=1×15

24=4×6=3×8=2×12=1×24

提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)

为什么?(不便携带……)

3、比较质疑,引入新课:

现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?

板书:13=1×13 学生思考,同桌说一说

17=1×17 (师板书在黑板左侧)

19=1×19

你还能举出几个这样的数吗?

据学生回答:20以内的质数。(这样的数还有很多)

二、探究原因:

(一)、探究质数意义:

1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?

(评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)

四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)

汇报:(鼓励学生用自己的语言描述)

整理揭示:象这样只有1和它本身两个约数的数叫“质数”。

(cai辅助逐步演示。)

2:1、 2

3:1、 3

5:1、 5

7:1、 7

11:1、11

13:1、13

17:1、17

19:1、19

……

2、再举几个质数,并说明理由。

(评:适时巩固应用,加深理解概念。)

(二)、探究合数

1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?

除了1和它本身还有别的约数。

揭示:象这样除了1和它本身,还有别的约数的数,叫“合数”。

(cai辅助逐步演示)


精选图文

221381